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This note is concerned with the Newton-Pade table containing rational inter
polants with varying numerator and denominator degrees. In the general case some
entries of the table can be equal, combined in so-calJed singular blocks. Any
singular block in this non-normal Newton-Pade approximation table consists of
squares forming a symmetric tail. It is the aim of this note to present global iden
tities between neighboring entries of a singular block. In particular, we generalize
Cordellier's identities for Pade approximation. The resulting algorithmic aspects,
e.g., a reliable modification of Claessens' cross-rule (G. Claessens, Numer. Math. 29
(1978), 227-23n, are discussed in (B. Beckermann and C. Carstensen, Numer.
Algorithms 3 (1992), 29--44). ({) 1993 Academic Press. Inc.

1. THE NEWTON-PADE ApPROXIMATION TABLE: PRELIMINARIES

Let (Zj)jENO be (not necessarily distinct) knots in the complex plane C
and let f be a function which is sufficiently smooth in a neighborhood
of these knots. Then, the rational interpolation problem (sometimes called
Hermite or osculatory rational interpolation problem) reads: for any
m,nEN o find polynomials Pm.n and qm.n (called solutions of the (m,n)
rational interpolation problem) of degree m and n, respectively, such that
f -plq has the zeros zo, ZI' .•., Zm+n counting multiplicities (abbr.: c.m.).

By [10, 12] this problem is closely connected with the Newton-Pade
approximation problem which is also under consideration here. As
Claessens pointed out (cr. [4, Theorem 1]) there exist unique polynomials
P:'. nand q:'. n' q:'. n being a monic polynomial, of "minimal degree"

degp:'.n ~m and

which satisfy the interpolation conditions

has the zeros zo, ..., Zm + n c.m.

199
0021-9045/93 $5.00

Copyright :C 1993 by Academic Press. Inc,
All righls of reproduction in any form reserved



200 BECKERMANN AND CARSTENSEN

such that other solutions (of the so-called (m, n )-Newton-Pade approxima
tion problem) are of the form s· P:'.,,, s· q:'. n' where s is a polynomial of
degree less than or equal to min {m - deg P:'. n' n - deg q:'. n}· p:" n' q:', n is
the minimal solution of the (m, n )-Newton-Pade approximation problem.

Note that, consequently, two solutions of the (m, n )-Newton-Pade
approximation problem have the same reduced form which is the
meromorphic function

. P:'.n
r m • n .=-.

qm,n

Therefore, rm, n is called the solution of the (m, n)-Newton-Pade
approximation problem. Moreover, (rm. n Im, n E No) is called the Ne»'ton
Pade approximation table.

The computation of some entries of the Newton-Pade approximation
table can be done recursively by various algorithms like, e.g., Claessens'
cross-rule [6] (see (4) below). Unfortunately, Claessens' cross-rule fails if
certain neighbouring values of the Newton-Pade approximation table are
equal to each other; such entries will be united and called a singular hlock,
while the Newton-Pade approximation table is called non-normal.

We note that the notation of normality is not uniquely used in the
literature (d., e.g., [4, p. 156] for paranormality).

The paper is organized as follows. In Section 2 the structure of the non
normal Newton-Pade table is recalled from [3-5, 7, 8]. We state a general
cross-rule type identity connecting all neighbors of a singular block in
Section 3, where some illustrating examples are also given. In addition, we
classify those entries which already determine the whole neighborhood of
a singular block. Proofs are given in Section 4. In Section 5 we consider the
particular square block case which leads to identities of the Cordellier type.
The connections between the general case and the square block obtained
by reordering of interpolation knots [8, 12] are discussed in Section 6.
Finally, in Section 7 we study more detailed consequences of the cross-rule
type identity of Section 3. A couple of examples are given concerning the
relationships between neighboring entries which strongly depend on the
shape of the singular block in the non-normal Newton-Pade table.

2. THE NON-NORMAL CASE: NOTATIONS

As Claessens pointed out in [5], any singular block consists of one
or more square blocks which are overlapping along a common diagonal
forming a "symmetric tail," similar geometric structures have been
observed in [2] for a more general approximation problem. In the sequel,
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we describe more detailed the form of singular blocks in the Newton-Pade
table, we refer to [3-5, 7, 8] for proofs and further explanations.

Let (m, n)E N~ be the starting point of the (finite) singular block which
consists of squares forming a symmetric tail, i.e., there exist pEN and
0= k o=k2p = 10 , 12p =p and k

"
..., k 2P - I E N, II, ..., 12p _ , E No such that for

any jE {O, ..., 2p}

forany iE{O,l, ...,kj-l},

while

Moreover kj+l-kjE{±l}, Ij + 1 -lj E{0,l} and j=kj +2Ij for any
j E {G, ..., 2p}. Define

A = {j E {O, ..., 2p - I }Ik j + I = k j + I } and u= {O, ..., 2p - I }\A

and notice that card A = P = card U. The case of an infinite singular block
(p = (0) can be described similarly.

Remarks. (i) The polynomials of the minimal solution P:,1I and q:,11
are not necessarily irreducible but common factors have zeros from
zo, "', Zm+n which are then called unattainable points; cf. [4, Theorem 2].
It is known and easily seen that, in the present notations, Zm + 11 +1 is
attainable iff j EA. Consequently, for any j E { 1, ..., 2p}, i = {O, 1, "" k j - 1},
zEiC

P:+lj+kj -l-i,n+lj+i(Z)=P:,1I(Z)' Il (z-zm+n+v) (1)
VE u. v<i

q:+I,+kj-I-i,n+lj+i(Z) = q:,1I(z), Il (z - zm+n+ v), (2)
\-'E U, \'<j

This justifies that U describes the unattainable points.

(ii) We note that iEA, jE U, j< i implies Zm+1I+i-=FZm+1I+j' (For a
proof of (i), (ii) see, e.g" [5,12]). This will be frequently used throughout
the sequel where we will say carelessly that "an unattainable point cannot
become attainable later."

(iii) In the present notations, kj denotes the number of equal
approximants, Ij is the number of unattainable and k l + Ij the number of
attainable points (related to the given singular block) of approximants of
the antidiagonal no. m + n + j - 1. Hence in the case j E A, j E U, locally
the block becomes "wider," and "narrower," respectively (compare [8,
p.555]),
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TABLE I

r rn. II n=O 2 3 4 5

m=O 1/2 NEo NE, NE2 NE,
1 SWo C C C NE.
2 SW, C C C NEs NE6

3 SW2 C C C C NE,
4 SW, SW. SWs C C NE.
5 SW6 SW, SW.

EXAMPLE 1. As in [5, Example 2], define ZO+4':= -3, ZI+4':=0,
z2+4,:=I, Z3+4,:=2, z12+,:=3 for i=0,1,2 and/(-3)=1/2,/(0)=2,
/(1)=3/2, /(2)=4/3, 1'(-3)=-1/4, 1'(0)=1, 1'(1)=1, 1'(2)=-1/9,
1"(-3)=1, 1"(0)=2, /"(1)=1, 1"(2)=2/27, /(3)=5/4, 1'(3)=1,
1"(3)= 1. Then we have C(z)=(z+2)/(z+ I), ZEC, and the structure is
shown in Table I (cf. [5, Table 1]).

In this example- we have p = 4, (ko, ... , kg) = (0,1,2,3,2,1,2,1,0),
(10' ..., 'g)= (0, 0, 0, 0,1,,2,2,3,4), A = {O, 1,2, 5} and U= {3, 4, 6, 7}.

Remark. (iv) For Pade approximants the mnemonic Sj' N j : Ej of
compass points is frequently used to describe the neighbors of the singular
block. For Newton-Pade approximants, this notation would be as follows;

{
N

NE= 1
J E

j

{
wsw= 1

I Sj

if j E A and j - 1 rt U

if j - 1 E U

if j E A and j - I rt U
if j - lEU

Since Nj , Sj, Wj can be computed e.g., using Claessens' cross-rule (if no
other singular block occurs there), throughout this note, we are mainly
interested in certain rules determining Ej • Consequently, the neighbors in
"outer corners," i.e., NEj , SWj with jE U and j-I E A, are neither given
data nor determinated by some rule. In the example this is true for J= 3,
J=6.

For any JE {O, 1, ... , 2p} let the meromorphic function aj be defined by

where, for any Z E C,

1
---=a··R·Q
NEj-C J J'

(3)
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Dj(z) :=f1iEU.i<j(Z-Zm+n+i)
OiEA.i<j (Z-Zm+n+i)

v-I

WI'.,,(z):= IT (Z-ZJ
i=Jl

203

and, by convention, empty products are 1. Here, am." is the leading
coefficient of P:." (the leading coefficient of q:." is 1). Since SWo #- C #
NEo we have am.n#-O; cf. Lemma 1 below: degp:.,,=m, degq:.n=n.

Note that, by (3), any recurrence relation for a
J

leads to an identity in
the non-normal Newton-Pade approximation table and vice versa. Thus
we will have a closer look at the aj which are in fact monic polynomials of
degree k j (cf. Lemma 2).

3. MOTIVATION AND FIRST RESULTS

We pause in treating the general case and assume the normal case, i.e.,
P = 1, first. Then Claessens' cross-rule [6] (generalizing Wynn's identity,
see, e.g., [1], for Pade approximants) gives

Z E C, which, by (3), can be written as

The first aim of this note is to adapt this identity to singular blocks.
Assume, for the moment, that the Newton-Pade approximation table is
normal, i.e. its entries can be computed by Claessens' cross-rule. Next, we
take all cross-rules with center C in

which is later an element of the singular block; cr. Table 1. Then we
add all these cross-rules and observe that all the "inner differences" (i.e.,
a term where two approximants of the form r m + I, H, I i. n + I, +, with
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jE{I, ...,2p-l} and iE{O, ... ,k;-I} arise) occur twice and their sum
vanishes. Hence we obtain the composed Claessens' identity

j ~A Z- Z:, + n +; . {sW; (z) - r m + II + ~ + k
l
+ 1 I, n + II + Jz)

- NE;(z)-rm+IHln+IJ+l+kJ+l_ I(Z)}

(5)

J,n+l, I(Z)J - ~EL/ Z - Z m + n + ; I' {SW; (z ) - r m + I, ~ + k
J

_ 1

--------1 (Z)},
N E; (Z) - r m + IJ ,1, /I + II _ 1 + kl _1

Z E iC. Now consider the non-normal case. It is not hard to see that by
arbitrarily small perturbations of the data we obtain a normal situation
such that (5) holds. Consequently, by continuity, we expect that we can
replace each term in any denominator of (5) by C(z). Then, (3) gives

L al(z)·Qj+l(z)= L aj+I!z)·Qj(z),
;E A ; E ['

Z E iC. (6)

Since in (6) no denominator vanishes in the case of a singular block, we
may hope (and will prove in the sequel) that (6) holds in the situation of
the previous section.

Note that (6) gives only one singular rule, although we are interested in
at least p identities of such type. Our first result implies (6) and covers this
question.

THEOREM l. For all t, Z E C there holds

L a;(z)·Qj+l(t)= L a;+I(z)·Qj(t),
lEA jEi}

(7)

where a; and Q j are defined in (3). This equation contains at least p identities
connecting approximants on the houndary of the singular hlock.

Using the classical notations as in (4), Eq. (7) takes the from

iE t - z:1+ /I +;' {SWitz; - C(z) - NE;(Z)I_ C(Z)}

fl t-Zm + lI + i fl
iEl/,i<,i Z Zm+II+; iEA,i<.i

Z Zm+lI-t-i

t-zn1-t-n+i

1-zm + lI + i

IE to', i< i-
fl

-m+n+i iEA.i<j

2 m -+- 11 -t-i

(-Zm+1I+;
(8)
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Theorem 1 is proved in the next section, but we will already discuss a
first application of the general identity (7). Multiplication of (7) with
OiEA (t-Zm+n+i) leads to

jE A
j - I ~ U

where

jE U
j+ I ~A

j E {}

j+ I E A

(9)

iEU,i<j ie A. i~j

In addition, let

= Qj(t)· n (t - Zm+n+;)'
iE A

( 10)

W;(t):= n (t-Zm+ n+;)' n (t-Z m+ n ;) (11)
ieU,i<j iEA,i;?:j+2

and note that

) E U,) + 1 E A => Wj (t) - Wj + 2(t) = (z m + n +; - Z m + n +1 + d . Wj (t)

) E U,) + 1t A=> wj(t) = Wj(t).

As mentioned in Remark Oi), for) E U, ) + 1 E A, the unattainable point
Z m + n + j cannot become attainable, in particular (since Z m + n + j + I is
attainable) zm+n+i -=I- zm+n+i+ ,. In Lemma 3 (see the next section) we will
prove that (Wj I) E U) are linearly independent.

This can be used as follows; see also Example 3 below. Provided that
ZEC is fixed and that aj(z) is known for all)EA,)-ltU, the left hand
side of Eq. (9), denoted by h(t), is known too. Then, (9) proves that h lies
in the linear hull of (Wj I)E U) and Lemma 3 implies that the coefficients
and hence (aj(z) 1)-1 E U) are uniquely defined and can explicity be
computed from (9).

EXAMPLE 2. Let us consider the Pade approximation table which is
included as a particular case for confluent knots, i.e., 0 = Zo = Z I = Z 2 = ....
We mentioned that a knot which once has become unattainable cannot
be an attainable point anymore; cf. Remark Oi) in Section 2. Since we
have exactly one knot 0, we claim the well-known fact that singular
blocks are squares for Pade approximations, i.e., A = {O, 1, ... , p - I} and
U= {p, ... , 2p-l}.
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Then, by definition, (8) gives for any t, Z E C

~t~ r:: I' {SWitz; - C(Z) - NEi(z)l_ C(zJ
2p Z2p - 1 {II}

I=~+l t 2p
1+ 1 ' SW,(z)-C(z)- NEJ(z)-C(z) .

This yields Cordellier's identities for j E {p + I, ..., 2p}

SW/(z)- C(z) NE2p ,(z) - C(z)

EXAMPLE 3. We continue Example I from [5, Example 2]. The
neighbors, defined in Table I, are given in Table II. Using R(z) =

(z+I)2/(z(z+3)) and C(z)=(z+2)/(z+I), the polynomials aj can be
computed as shown in Table II. We assume that (a/ Ij E A and j - I ¢ U) is
known from Table II. By (8) and (11), (9) reads

(t - 2)2 (t + 3) + (z - I)(t - 2)(t + 3) +z(z- 3)(t- 2)

= a4 (z)(t - 2) + a7(z) t(t - 1)+ a8(z) t(t - I)(t + 3)

+as(z){t(t-2)- t(t-I)},

whence

t 3+ t2(z - 2) - t(Z2 - 2z - 9) - 2(Z2 - 9)

= a8(z) t3+ t2(a7(z) + 2a8 (z))

+ t(a4(z) - as(z) - a7(z) - 3ag(z)) - 2a4(z).

Comparing coefficients one easily computes (aJIj - lEU), as shown in
Table II.

As mentioned above, a3 and a6 , i.e., (aj Ii E U and j - I E A), do note
occur in these calculations as well as throughout this note.

Following the ideas of Example 3, we see that, given (a/(z)IiEA and
j - 1 ¢ U), we are able to determine (aj(z) Ii - 1 E U). The next result,
proved at the end of Section 6, shows that even less input data are
sufficient (for non-square blocks).

THEOREM 2. Assume that the knots Zm + n' Zm + n + I' ... , Zm + n + 2p + 1 and
the sets A and U are known. Then, using the values

(aj(z)IiEA,kj>max{kili=O, ...,j-1 andiEA}), (12)

the quantities (aj(z) Ij E A or j - lEU) can be computed.
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o

2

3

4

5

6

7

8

NE,(::)

-2
::-1

6

::2 + 3

-24

-24
::4 + Z3 _ 9::2 + 3z + 12

3::-18
::4 + z' - 9z1 + 6:: - 9

41:: 2 +97::-90
5::4 + 5::' -4::1 + 71:: -45

-1066:: 2
- 8282:: + 7380

205::5
- 205::4

- 2255:: 3 + 3239::2
- 5986:: + 3690

-4::3 -30:: 2 -194::+ 180
5:: 5

- 5::4
- 59:: 3 + 79:: 2

- 142:: + 90

68::4 + 280z 3
- 22:: 2 + 990z + 540

15:: 5 + 53::4 + 27:: 3 + 169::2
- 630:: + 270

TABLE II

SW,(::)

::+2
2

_::1_::+8

4

::3 _ ::2 _ 6:: + 24

12

::4 + 2::' _ 9::2 - 6:: + 48

24

_::4 _ 2:: 3 + 9::2 _ 21:: + 18

15::-9

_5::4 -10::' +46::2 + 107:: - 90
::2 + 76::-45

- 5::5 + 65:: 3 + 14::2
- 302:: + 180

74:: 2
- 196:: + 90

-5::5 + 71:: 3 + 20::2
- 314:: + 180

6:: 3 + 74::2
- 202:: + 90

- 15:: 5 + 8::4 + 245z' + 68z 1
- 990z + 540

8z4 + 42::' + 214::2
- 630:: + 270

a,(::) w,(I)

(l-l)(I-2f(l+3)

Z
m

::-1 (1-2)1(1+3) ~
-I
0
Z

::1_3:: (1-2)(1+3) I
"tl
>
"m-

::'_9::+ 12 1-2 >
"tl
"tl

'"0::1_9 1(1 - 2) :><
3:
>
-I

::+1 1(1-1)(1-2) 0
Z
-I
>

_2 -::-10 1(1 - I) Ol
t""m

::-4 1(1-1)(1+3)

12
( 1- I )( 1+ 3)

tv
0
--J
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I

L

m +p-l

FIGURE I

The assertion of Theorem 2 is illustrated in Fig. I, where in the non
normal Newton-Pade table the singular block is hatched. The positions of
approximants which have to be known are marked by".... On the other
hand "0" designates the position of SWj or NEj (NEj and SWj are the
upper and lower neighbor of the singular block in the antidiagonal no.
m + n + j - I) which are related to aj (z). Then aj (z) can be computed using
the entries which are marked by "e" in previous antidiagonals.

4. PROOFS

We prove Theorem 1 with the aid of two lemmata. The first lemma is
already known for normal Newton-Pade tables [II].

LEMMA 1. [3, II]. For any m, n E No

1
0

or degq:.,,<n,
rm + I, /I - rm, 11 =

W O. m+,,+ I
am+l,n" * *

qm."·qm+l.,,
otherwise

(13)
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1
0 iff degp:',n < m

_ _ or degq:',n+l<n+l, (14)
r m, n r m, n + 1 -

Wo, m+ n+ I othenl'ise
am, n' * *qm. n . qm, n+ I

1
0 iff degp:'+I,n<m+1

_ _ or degq:',n+l<n+l. (15)
rm + I, n rm, n + 1 -

wO,m+n+2 h'
am+ J, n' * * ot ennse

qm + 1. n . qm, n + 1

LEMMA 2 (cf. [3]). ao= 1 =a2p and for any jE {O, 1, ... , 2p-l}, there
holds

where

aj = aj + 1 • W m + n + j. m + n + j + I - c j + I

if j E A,

if jE U,

am,n am+~-I,n+~+kJ '"
c. = ----"-"-"--- + E Il.-,

J a a
m+lj+kl.n+IJ~l m.n

and the first and second term must be neglected if SWj +1 = SWj and
NEj +1 = NEj , respectively. In particular, ao, ..., a2p are monic polynomials of
degree k o, ..., k 2p ~p, respectively.

Proof If jE A then, by definition

aj +1 - aj • Wm+n+j,m+n+j+ I

By Lemma 1 any of the appearing differences can be written as the right
hand side of Eq. (13), (14), and (15), respectively. For instance,

(SWJ + I - C)· (SWj - C)

(r m + IJ + kj + I, n + /) - 1 - r m + I, + kJ • n + ~,) . (rm + IJ + k,." + II 1 - rm + II + k/." + 'I)

640742,7
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WOo m+n+j
am + Ij + kJ + 1, n + Ij - L' * *

qm+lj+k}.n+I,-1 ·qm+I}+k}+I.n+I,--1

am + 1;+ kJ + 1, n + I} - 1 • WOo m+ n+i + I

q: + I, + k, + 1, n + I} - 1 • q: + I, + k}. n + I,

* 2qm+IJ+k}.n+l}

where we used (2) for q:+II+k"n+I"

This proves the theorem if j EA. The proof for j E U as well as the proof
of ao = 1 = a2p is similar. I

Remark. Note that ao = 1= a2p yields Claessens' cross-rule (4) for p = 1.
The above "local relations" between the monic polynomials ao, ... , a2p can
be used for a recursive algorithm to compute values of the Newton-Pade
approximation table even in the non-normal case.

THEOREM 3. For any j E {O, ... , 2p} and t, Z E C there holds

iE A. i<j iE U. i<j

where [t, z] denotes the divided difference with respect to the knots t, Z.

Proof of Theorem 1. Since a 2p = 1 and [t, z] a2p = 0, the assertion
follows from Theorem 3 with j = 2p. I

Proof of Theorem 3. By Lemma 2 using .0;+ I(Z)/.o;(z)= 1/(z-zm+n+J

and (z-Zm+n+i) if iEA and iEU, respectively, we obtain for t,ZEC,
iE {O, ... , 2p-I},

if iE A

if iE U
( 17)

and conversely

if iE A

if i E U.
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Consequently, for jE {a, ..., 2p}, t, ZEC, there holds

j -- I

ai(t)·Qj(t)=I+ L (ai+1(t)·Qi+\(t)-ai(t)·Qi(t))
i~O

=1- L Ci ·Qi+l(t)+ L Ci+\·Qi(t)
iEA.i<J iElJ.i<i

=1- L {ai(z)·(Z-t)·Qi+\(t)+ai(z)·Qi(t)
iE A. i<j

Ie U.i<j

211

+ ai + \(z)· Qi+ \(t) - ai(z)· Qi(t)}

= (t - z) . tE];<j ai(z) . Q i + I (t) - iE I:<j ai + I (z) . Q i( t)}

+ a)(z)· Qj(t)

and hence (16). I

LEMMA 3. (Wi Ij E U), as given in (11), are linearly independent
polynomials.

Proof Given j E U, let the linear functional L j be the divided difference
with respect to the knots (zm+n+iliE U, i~j). Then, the Vandermonde
matrix

is lower triangular having the diagonal entries

n
i€A.i~j+2

(Zm+n+j-Zm+n+i)' jE U.

Since an unattainable point cannot later become an attainable point,
we obtain L j ( Wj ) # O. Therefore, V is regular and (Wi I j E U) are linearly
independent. I

5. THE SQUARE BLOCK CASE

In this section we consider the square block case which is characterized
by A = {a, 1, ..., p - I} and U = Lp, ..., 2p - I}. Then, as seen above, the
generalized cross-rule becomes Cordellier's identity for the Pade-table. On
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the other hand it is known that by reordering the knots we are always able
to deal with the square block case; see Section 6.

To apply (9), compute for any tEe

p l

Wj(t) = TI (t-z m + lI + i )

i=j

}- I

wj(t) = TI (t - Zm+n+ ,)
i= P

if j E { 1, ... , p}

if j E {p, ... , 2p - 1}

and note that »'1' ..., W 2p I are monic polynomials of degree p - I, ..., 0, ...,
p-I, respectively. Moreover, (9) states that (aj(z)ljEA) and
(aj(z)IJ-1 E U) are just coefficients of (finite) Newton series. Therefore,
by evaluation of the divided difference with respect to the knots
zm+n+p, ... , Zm+n+j-l and to the variable t in (9) we easily obtain the
following corollary.

COROLLARY 1. In the square block case, i.e., A = {O, I, ... , p - I} and
U= {p, ..., 2p-I}, we have for any jE {p+ I, ... , 2p}

20 -j

aj(z) = I aj(z)· [zm+n+p, ••. , zm+n+j~ J] W m + n + i + J.m+n+p·
(=0

As already studied in Example 2 in Section 3, for Pade approximation
(zv =0) Corollary 1 reduces to aj(z) =a2p - l (z). For arbitrary knots and
a singular block with the shape of a square, a;(z) depends just on
ao(z), ..., a2p j(z), which is illustrated in Table III. It is the aim of the
following sections to investigate this behavior in the general case.

Remark. If we consider the meromorphic functions NE
I

and SW, and
the polynomials aj instead of their values at a fixed complex number z, the
relations mentioned in Corollary I and Table III can be written more

TABLE III

n-l n

m-I NEo NEt
m SWo C C

SW1

C
SW2p _)

~SW
C

}

c

c
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compactly. Indeed, using Theorem 2, for 0 ~ i < j ~p, t, Z E C and the
square block case there holds

j-I

L a,(z) 'Wm+ n+ v + l,m+n+j(t).
v=o

Evaluating this identity in the variable t for divided difference with respect
to the knots Zm+n+;' ..., zm+n+j-I gives

aj(z) = [zm +n+ j, •• " zm+n+j-l, z] ai' O~i<j~p.

Consequently, if aj is known ai can be computed as a certain divided
difference.

Therefore under the assumptions of Corollary I, j E {p + I, ..., 2p }, we
have

2p - j

Qj(z) = L [Zm+n+i' ... , Zm+n+2p-j~ l' z] a2p_j
i~O

· [Zm+n+p, .. " Zm+n+j-l] W m + n + i + 1.m+n+p

2p -)

= L [Zm+n+p, .. " Zm+n+j-I, Zm+n' ... , Zm+n+iJ Wm+n.rn+n+p
;~O

· [Zm+n+i' ... , Zm+n+2p-j-l, z] a2p_j

· (Wm+ n. m+ n+ p . a2p - j),

the last equality following by Leibniz' rule, where we used deg a2p _j =

2p - j. This yields

aj(z) = [zm+n+p, ..., zm+n+j- I' z](wm+ n+ 2p-j. m+n+p' a2p-J (18)

Hence-as for Pade approximants-in the square block case the polyno

mial aj can be computed if we only know the polynomial a2p,j (cf. [9]).

6. REORDERING

In this section we derive some identities by reordering to get the square
block case of the previous section. The technique of reordering is frequently
used in the literature (see, e.g., [12]). It is based on the fact that the
Newton-Pade approximant rm. n does not depend on the order of the knots
(zo, ..., zm+n) (thus they may be permuted) and that r m. n does not depend
on (Zm+n+l,Zm+n+2'oo,) (thus they may be changed arbitarily). We stress
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that, in general, a reordering will change the structure as well as the
property of being an attainable or an unattainable point. On the other
hand, since an unattainable point cannot become an attainable point later,
cf. Remark (ii) in Section 2, a reordering such that only attainable points
get a former position does not change attainability.

We return to the definitions of the singular block in the general case of
Section 2. In addition, we describe attainable and unattainable points more
explicitly by

(z1"",z:):=(zm+n+;liEA)

( U u) ( I' U)Zl'''''Zp := Zm+tt+; IE ,

whence

7 _ O' A
-m+n + j - -'l+k,+ 1 if JEA and '7 - '7£/-

"'m+n+j-"'~,+I
if j E U.

Similarly as w /'. v' define

l' -- ]

w~.v(t):= n (t-z1)
i=p

and
\' -- J

U n Uw/"v(t):= (t-z;)
I = t~

for 1 ::;;, v::;;' J1. ::;;, p + 1, tEe Note that

and

Then, we reorder the knots (zo, ... , zm+n+2p d into

( - - ). ( O'A O'AO'U "u)
zo,··"zm+Il+2p 1'= zO'···'Zm+n-I' .... t'···' .... p' ... l'···' ... p·

Using the data f and (20' ..., 2m +n + 2p _ d, we obtain a second Newton
Pade table whose entries are now denoted by fl'. v. Indeed, this second
Newton-Pade table coincides with the original one in each antidiagonal
no. 0, ..., m + n - 1, m + n + 2p - 1, m + n + 2p, ... and the singular block is
a square, i.e., A= {O, ... , p - I} and D= {p, ..., 2p - 1}. As in the previous
sections we define polynomials iio.... , ii 2p ' The following theorem
determines the connection between aj and iij'

THEOREM 4. For any j E {O, ... , 2p} there holds aj = iij if Ij =0 and
otherwise

( 19)
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Proof aj depends on f and (zo, ... , zm+n+j~ d. We consider a second
reordering

:= (zo, ... , Zm+n-l' z:, ... , zt+/, zf, .. 0' Z~I, z~/, Z~I, ... )
! j J J J

amJ, analogously, we write '/1, v and ao, ...,aj for the Newton-Pade approxi
mants and the related ·polynomials. Since Newton-Pade approximants are
independent of permutation of knots we achieve

ii;=a;

and

Since z~ is unattainable and then will never become an attainable point
/

later, the singular block of the considered third non-normal Newton-Pade
table is a square. Therefore, we may apply Corollary 1 to this third singular
block with jj = kj + lj and obtain

2j5- j

iii = I iii' [Zm + n + fi' ..., i m + n + j - J ] Wm + n + i + 1, m + n + p'
i=O

Since 2jj-j = kj and wm+n+l+l,m+n+p = W!+2.1/+k/+1' we conclude
( 19). I

Remark. The imaginary polynomials ao , ... , ii 2p are defined by
reordering. Although reordering could be a numerical tool, we stress here
a fictitious reordering which will not be carried out explicitly.

Proof of Theorem 2. Given the data described in (12), by applying (19)
we are able to compute successively ii; for j = 0, ... , max {k iii = 0, ... , 2p} - 1
and therefore the unknown values aj(z). I

7. GLOBAL IDENTITIES

In this section we introduce some global rules (illustrated in Figs. 2 and
3) which depend strongly on the structure of the singular block. As already
discussed for the square block case, we are most interested in relations
between the values ao(z), ..., a 2p(z).

Recall from Theorem 2 that we can expect only rules combining aj(z)
with ao(z), ..., aj _ .(z) if

k;:% max {ko, ... , kj _ I}'
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which is obviously equivalent to

j-I E U or 3i <j

Therefore, Corollary 2 and 3 discuss the cases j - lEU and k j = k" respec
tively, which are consequences of Theorem 3. The most interesting special
cases are stated explicitly.

COROLLARY 2 For j - lEU let Xl' ... , X qE C denote zeros of »'j _ I'

counting multiplicities. Then, for ZE C, there holds

aj(z)· [XI' ... , x q, zt'J wj _ 1 = L aj(z)· [XI' ... , x q, zt'J Wi+1
iEA,i<j-l

I aj+l(z).[xl, ...,xq,zt'JWj' (20)
ie U, i<j-l

Proof By Theorem 3, we obtain after multiplication with

[TeA (t-Zm+n+j)

WJ_I(t)·[t,z]aj _ l = L ai(Z)'»'i+l(t)- I aj+l(z)·wi(t).
ieA.i<j-J ielJ,i<j-l

This equation is evaluated for [x I' ... , X q , Z t'J with respect to t. Since
j - lEU, Lemma 2 leads to

and this concludes the proof. I

EXAMPLE 4. Taking q = 0 in Corollary 2 yields a simple rule for aj(z)
provided that wj_l(zn#O. This assumption can be dropped if we chose

(x I' ... , x q ) = (z y, ..., Z j') with q being the multiplicity of the zero Zy of
, , J

Wj-I'

Throughout this section, we define for i, j E {O, ..., 2p}

d '- [ZU ~U ZA ~A] '"
i,j'- I""''''}' kj+lj+J""''''p ''-i

such that dj,j= I if ki=k;+ I and di,j=O if ki>kj + 1. Moreover,

[ U U] A
Z I, + l' .." Z /) OJ k I + Ii + I, kJ + /) + 1

(21)

A A U
[z kj + IJ + l' ... , Z k; + I.] WI) + 1, /, + 1

if i > j and k j + (> k) + Ij
o if i ~ j and k i + ( = k; + I;

di • j =
o

if i <j

if i:::;; j

and

and
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EXAMPLE 5. Let us take (XI, ...,Xq)=(zy, ...,Zt'_I,Z~+I,+I""'z:) in
Corollary 2, then some summands vanish in (20). We obtain for j - lEU,
ZEC

Qi(Z)=
ieA,i<j-J

k r ~ k,
ieU,i<j-l

k i + 1 ~ k}

(22)

This identity coincides for the square block case with Corollary 1. Using
(22) we will show the simpler identity (25) in Example 7 below.

The following rules combine Qi(z), ..., Qi(z) if Qi and Qi have the same
degree.

COROLLARY 3. Let i,jE{0, ...,2p}, i<j and ki=ki . For ~, XI"'"

X P _ k
J

E C, there holds

aj(z)-a;(z)= L av+I(Z)·[XI, ...,Xp_kJ] 11\
VE u. i~ \' <j

L av(z)'[XI, ... ,Xp_k)l1·v+I' (23)
l'EA.i~l'<j

Proof Setting h(t):= aj(t)· wi(t) - ai(t)· w;(t), Theorem 3 gives after
multiplication with (t - z)

+ I a v(z)·II\+I(t)·(t-z)
\IE A. I:%: \-'<j

I a,.+dz),w,.(t)·(t-z).
V E {J, i ~ v < j

Since deg Wi = deg 11', = P - k j it suffices to prove [x I' ... , XP _ k
J

' z] h = O.
By definition of h( t), using the methods of the proof of Theorem 3
(cf. (I 7», we get

j- 1

h(t)= I (Wv+I(t)·av+l(t)-II· v(t)·av(t))
\'=1

\' E U. i ~ \' -< j

cv + l' W,.(l)-
liE A, i~ \' <)

Hence by a reordering of the knots (Zm+n+i' ..., zm+n+j tl similar to the
proof of Theorem 4, we can conclude that deg h < p - k j . I



218 BECKERMANN AND CARSTENSEN

n n+p-l

m

o

•
• 0

m+ p-l

o • •

o

FIGURE 2

E 6 k· ( U U A A) dXAMPLE . Ta 109 (Xl' ... , Xp-k) = ZI' ... , Z',' ZkJ+'J+ 1 ' ••• , Zp an
using the definition of di. j in (21), Corollary 3 reads as follows: for
i,jE {a, ..., 2p}, i<j, ki=kj , ZEC

~'E U. i~ ~'<j

k\"+1 ~k}

\'EA. i~ v<j
kv~ kj

a.(z)·dH1 . j . (24)

If j - 1 E A then aj (z) does not arise on the right hand side of (24) and
hence can be computed using (24). This is illustrated in Fig. 2 where, as
above, the singular block is hatched and "0" and "e" mark the position
of approximants which arise in (24) on the left and right hand side, respec
tively. With i = j - 4 and A, U given by the hatched structure, the relation
from Fig. 2 reads

aj (z) - aj _ 4(Z) = a; _3(Z) . d; 4. j + aj _ 2(Z) -d; _3. j - a; _2(Z) .°- a,_ 1(z) ·0.

Note that various i can be chosen. The "most efficient relation" is obtained
choosing i:=max{v<jlkj=k,} such that iEU.

EXAMPLE 7. Finally, let us have a closer look at the case j - 1 E U.
Then, a;(z) appears on both sides of (24) and hence (24) cannot be used



NEWTON-PADE APPROXIMATION TABLE

n n+p-l

• • • •
m •

• 0

•
•

0

o
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m+p-I

FIGURE 3

to compute aj(z) from ai(z), ..., aj_l(z). On the other hand, we can add this
rule to (22) and obtain for j - lEU, i <j and k i = k j

veA,v<i
k~,:E; k,

I-'E U v<i
k~,+;:E;kJ

These approximants are illustrated in Fig. 3 where, as above, the singular
block is hatched, "0" and "e" mark the position of approximants which
arise in (25) on the left and right hand side, respectively. Note that the
"most efficient rule" is obtained choosing i = min {v Ik v = k j }.
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